1,855 research outputs found

    Experimental and Novel Analytic Results for Couplings in Ordered Submicroscopic Systems: from Optomechanics to Thermomechanics

    Get PDF
    Theoretical modelling of challenging multiscale problems arising in complex (and sometimes bioinspired) solids are presented. Such activities are supported by analytical, numerical and experimental studies. For instance, this is the case for studying the response of hierarchical and nano-composites, nanostructured solid/semi-fluid membranes, polymeric nanocomposites, to electromagnetic, mechanical, thermal, and sometimes biological, electrical, and chemical agents. Such actions are notoriously important for sensors, polymeric films, artificial muscles, cell membranes, metamaterials, hierarchical composite interfaces and other novel class of materials. The main purpose of this project is to make significant advancements in the study of such composites, with a focus on the electromagnetic and mechanical performances of the mentioned structures, with particular regards to novel concept devices for sensing. These latter ones have been studied with different configuration, from 3D colloidal to 2D quasi-hemispherical micro voids elastomeric grating as strain sensors. Exhibited time-rate dependent behavior and structural phenomena induced by the nano/micro-structure and their adaptation to the applied actions, have been explored. Such, and similar, ordered submicroscopic systems undergoing thermal and mechanical stimuli often exhibit an anomalous response. Indeed, they neither follow Fourier’s law for heat transport nor their mechanical time-dependent behavior exhibiting classical hereditariness. Such features are known both for natural and artificial materials, such as bone, lipid membranes, metallic and polymeric “spongy” composites (like foams) and many others. Strong efforts have been made in the last years to scale-up the thermal, mechanical and micro-fluidic properties of such solids, to the extent of understanding their effective bulk and interface features. The analysis of the physical grounds highlighted above has led to findings that allow the describing of those materials’ effective characteristics through their fractional-order response. Fractional-order frameworks have also been employed in analyzing heat transfer to the extent of generalizing the classical Fourier and Cattaneo transport equations and also for studying consolidation phenomenon. Overall, the research outcomes have fulfilled all the research objectives of this thesis thanks to the strong interconnection between several disciplines, ranging from mechanics to physics, from structural health monitoring to chemistry, both from an analytical and numerical point of view to the experimental one

    What about Phenol Formaldehyde (PF) Foam in Modern-Contemporary Art? Insights into the Unaged and Naturally Aged Material by a Multi-Analytical Approach

    Get PDF
    The ageing behavior of phenol formaldehyde (PF) foam, a material increasingly used in modern‐contemporary art, was investigated by a multi‐analytical approach. PF foams with open and closed‐cell structures were selected and analyzed in their unaged and naturally indoor‐aged state by employing optical microscopy (OM) and fiber optical reflectance spectroscopy (FORS) for assessing their morphology and color alteration. Micro‐Fourier transform infrared spectroscopy (Ό‐ FTIR) was used for determining chemical changes and oxidation processes, and the acidity was monitored by pH measurements. The results clearly showed the extreme sensitivity of both open and closed‐cell PF foams to conditions typically found in indoor museums. OM indicated that the cells of the foams are prone to disrupt, and a tendency towards a red color shift was observed with FORS. Ό‐FTIR revealed the formation of quinone groups resulting from oxidation reactions. Finally, a slight decrease in the acidity was found by pH measurements.The ageing behavior of phenol formaldehyde (PF) foam, a material increasingly used in modern‐contemporary art, was investigated by a multi‐analytical approach. PF foams with open-and closed‐cell structures were selected and analyzed in their unaged and naturally indoor‐aged state by employing optical microscopy (OM) and fiber optical reflectance spectroscopy (FORS) for assessing their morphology and color alteration. Micro‐Fourier transform infrared spectroscopy (Ό‐ FTIR) was used for determining chemical changes and oxidation processes, and the acidity was monitored by pH measurements. The results clearly showed the extreme sensitivity of both open-and closed‐cell PF foams to conditions typically found in indoor museums. OM indicated that the cells of the foams are prone to disrupt, and a tendency towards a red color shift was observed with FORS. Ό‐FTIR revealed the formation of quinone groups resulting from oxidation reactions. Finally, a slight decrease in the acidity was found by pH measurements

    Bipolar Spectrum Symptoms in Patients with Fibromyalgia: A Dimensional Psychometric Evaluation of 120 Patients

    Get PDF
    Background: Fibromyalgia Syndrome (FMS) is characterized by chronic widespread pain, fatigue, unrefreshing sleep and cognitive dysfunction. Depressive and manic symptoms are often reported in FMS patients' history. The aim of this study was to evaluate the prevalence of bipolar spectrum symptoms (BSS) and to correlate these with quality of life (QoL) scores and antidepressant treatment. Methods: From October 2017 to July 2018, a battery of QoL questionnaires (FIQ, PSQI and SF-12) was administered to 120 FMS patients after a clinical examination. The MOODS-SR lifetime questionnaire was then remotely administered to the patients included in the study. Results: The presence of depressive and manic lifetime symptoms was found, in line with the results of the available literature. A correlation was found between the history of depressive symptoms and the severity of FIQ and SF-12 scores. Despite a low statistical strength, a trend toward a correlation between a history of manic symptoms and SNRI treatment was detected. Conclusions: The correlation between the MOOD-depressive domains and poor QoL is in line with the available literature. Further studies are needed to corroborate these findings and to elucidate the relationship between manic symptoms and SNRI treatment

    Phase Change Materials in Glazing: Implications on Light Distribution and Visual Comfort. Preliminary Results

    Get PDF
    The visual comfort concerned with a technology with PCM embedded into a double glazing unit was analyzed, using the Daylight Probability Glare and the ‘Useful Illuminance’ (percent of workplane with an illuminance in the range 100-3000 lx). A sample office room was modeled using Radiance, under a clear sky and with the façade facing south. The visible transmittance of PCM was measured in laboratory and used as input in Radiance. The simulations were carried out for the two solstices and the Autumn equinox (four hours per day), for three sites (Östersund, 63.2°N; Turin, 45.2°N; Abu Dhabi, 24.4°N), considering the solid state of the PCM only

    Secreted Gal-3BP is a novel promising target for non-internalizing Antibody–Drug Conjugates

    Get PDF
    Abstract Galectin-3-binding protein (Gal-3BP) has been identified as a cancer and metastasis-associated, secreted protein that is expressed by the large majority of cancers. The present study describes a special type of non-internalizing antibody-drug-conjugates that specifically target Gal-3BP. Here, we show that the humanized 1959 antibody, which specifically recognizes secreted Gal-3BP, selectively localized around tumor but not normal cells. A site specific disulfide linkage with thiol-maytansinoids to unpaired cysteine residues of 1959, resulting in a drug-antibody ratio of 2, yielded an ADC product, which cured A375m melanoma bearing mice. ADC products based on the non-internalizing 1959 antibody may be useful for the treatment of several human malignancies, as the cognate antigen is abundantly expressed and secreted by several cancers, while being present at low levels in most normal adult tissues

    Intestinal morphometry, enzymatic and microbial activity in laying hens fed different levels of a Hermetia illucens larvae meal and toxic elements content of the insect meal and diets

    Get PDF
    To evaluate the effects of feeding a Hermetia illucens (HI) larvae meal on the different intestinal traits of hens, and to determine the toxic elements’ concentration in the insect meal and diets, 162 hens were randomly allotted to three groups. The control received a corn-soybean meal-based diet (SBM); the HI25 and HI50 groups received two diets in which the 25% and 50% of the dietary protein were replaced by the HI protein, respectively. The duodenal and jejunal villi height and villi/crypt were higher (p < 0.01) in the SBM than in the HI groups. The ileal villi height was higher (p < 0.05) in the SBM and HI25 groups than the HI50. The HI50 group exhibited a lower duodenal maltase activity. The intestinal alkaline phosphatase (IAP) activity linearly decreased in the duodenum and jejunum as the dietary insect meal inclusion increased. The HI50 group had a higher acetate and butyrate level than the SBM. The levels of cadmium (Cd), lead (Pb), mercury (Hg), and arsenic (As) in the diets and insect meal were lower than the maximum values established by the EU Commission. The 25% soybean protein replacement with Hermetia illucens larvae meal in the diet of laying hens was more suitable and closer to the optimal level than 50%

    Rehabilitation and biomarkers of stroke recovery: study protocol for a randomized controlled trial

    Get PDF
    Background: Stroke is a leading cause of disability. Nonetheless, the care pathway for stroke rehabilitation takes partially into account the needs of chronic patients. This is due in part to the lack of evidence about the mechanisms of recovery after stroke, together with the poor knowledge of related and influencing factors. Here we report on the study protocol \u201cRehabilitation and Biomarkers of Stroke Recovery,\u201d which consists of 7 work-packages and mainly aim to investigate the effects of long-term neurorehabilitation on stroke patients and to define a related profile of (clinical-biological, imaging, neurophysiological, and genetic-molecular) biomarkers of long-term recovery after stroke. The work-package 1 will represent the main part of this protocol and aims to compare the long-term effects of intensive self-rehabilitation vs. usual (rehabilitation) care for stroke. Methods: We planned to include a total of 134 adult subacute stroke patients (no more than 3 months since onset) suffering from multidomain disability as a consequence of first-ever unilateral ischemic stroke. Eligible participants will be randomly assigned to one of the following groups: intensive self-rehabilitation (based on the principles of \u201cGuided Self-Rehabilitation Contract\u201d) vs. usual care (routine practice). Treatment will last 1 year, and patients will be evaluated every 3 months according to their clinical presentation. The following outcomes will be considered in the main work-package: Fugl-Meyer assessment, Cognitive Oxford Screen Barthel Index, structural and functional neuroimaging, cortical excitability, and motor and somatosensory evoked potentials. Discussion: This trial will deal with the effects of an intensive self-management rehabilitation protocol and a related set of biomarkers. It will also investigate the role of training intensity on long-term recovery after stroke. In addition, it will define a set of biomarkers related to post-stroke recovery and neurorehabilitation outcome in order to detect patients with greater potential and define long-term individualized rehabilitation programs. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT04323501

    The GPIIIA PlA2 polymorphism is associated with an increased risk of cardiovascular adverse events

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical impact of PlA2 polymorphism has been investigated in several diseases, but the definition of its specific role on thrombotic cardiovascular complications has been challenging. We aimed to explore the effect of PlA2 polymorphism on outcome in patients with atherosclerosis.</p> <p>Methods</p> <p>We studied 400 consecutive patients with coronary artery disease (CAD) undergoing percutaneous coronary intervention. A replication study was conducted in 74 hypertensive patients with cerebrovascular events while a group of 100 healthy subjects was included as control population. PlA genotype was determined by PCR-RFLP on genomic DNA from peripheral blood cells. Major adverse cardiac events (MACE), were considered as end points, and recorded at a mean follow up of 24 ± 4.3 months.</p> <p>Results</p> <p>The frequencies of PlA2 polymorphism was similar between groups and genotype distribution was in Hardy-Weinberg equilibrium. In patients with CAD, the presence of PlA2 allele was associated with higher incidence of cardiac death (13.1% vs. 1.5%, p = 0.0001), myocardial infarction (10.7% vs. 2.6%, p = 0.004) and needs of new revascularization (34.8% vs. 17.7%, p = 0.010). Accordingly, the Kaplan-Meier analysis for event free survival in patients harboring the PlA2 allele showed worse long-term outcome for these patients (p = 0.015). Cox regression analysis identified the presence of PlA2 as an independent predictor of cardiac death (OR: 9.594, 95% CI: 2.6 to 35.3, p = 0.002) and overall MACE (OR: 1.829, 95% CI: 1.054 to 3.176, p = 0.032). In the replication study, the PlA2 polymorphism increased the risk of stroke (OR: 4.1, 95% CI: 1.63-12.4, p = 0.02) over TIA and was identified as an independent risk factor for stroke (B:-1.39; Wald: 7.15; p = 0.001).</p> <p>Conclusions</p> <p>Our study demonstrates that in patients with severe atherosclerosis the presence of PlA2 allele is associated with thrombotic cardiovascular complications.</p

    Erratum to: Single cell analysis of CD4+ T cell differentiation reveals three major cell states and progressive acceleration of proliferation.

    Get PDF
    Background: Differentiation of lymphocytes is frequently accompanied by cell cycle changes, interplay that is of central importance for immunity but is still incompletely understood. Here, we interrogate and quantitatively model how proliferation is linked to differentiation in CD4+ T cells. Results: We perform ex vivo single-cell RNA-sequencing of CD4+ T cells during a mouse model of infection that elicits a type 2 immune response and infer that the differentiated, cytokine-producing cells cycle faster than early activated precursor cells. To dissect this phenomenon quantitatively, we determine expression profiles across consecutive generations of differentiated and undifferentiated cells during Th2 polarization in vitro. We predict three discrete cell states, which we verify by single-cell quantitative PCR. Based on these three states, we extract rates of death, division and differentiation with a branching state Markov model to describe the cell population dynamics. From this multi-scale modelling, we infer a significant acceleration in proliferation from the intermediate activated cell state to the mature cytokine-secreting effector state. We confirm this acceleration both by live imaging of single Th2 cells and in an ex vivo Th1 malaria model by single-cell RNA-sequencing. Conclusion: The link between cytokine secretion and proliferation rate holds both in Th1 and Th2 cells in vivo and in vitro, indicating that this is likely a general phenomenon in adaptive immunity
    • 

    corecore